Fault Tolerant Variable Block Carry Skip Logic (VBCSL) using Parity Preserving Reversible Gates
نویسندگان
چکیده
—Reversible logic design has become one of the promising research directions in low power dissipating circuit design in the past few years and has found its application in low power CMOS design, digital signal processing and nanotechnology. This paper presents the efficient design approaches of fault tolerant carry skip adders (FTCSAs) and compares those designs with the existing ones. Variable block carry skip logic (VBCSL) using the fault tolerant full adders (FTFAs) has also been developed. The designs are minimized in terms of hardware complexity, gate count, constant inputs and garbage outputs. Besides of it, technology independent evaluation of the proposed designs clearly demonstrates its superiority with the existing counterparts.
منابع مشابه
Efficient Approaches for Designing Fault Tolerant Reversible Carry Look-Ahead and Carry-Skip Adders
or Classical logic circuits dissipate heat for every bit of information that is lost. Information is lost when the input vector cannot be recovered from its corresponding output vector. Reversible logic circuit implements only the functions having one-to-one mapping between its input and output vectors and therefore naturally takes care of heating. Reversible logic design becomes one of the pro...
متن کاملReversible Logic Synthesis of Fault Tolerant Carry Skip BCD Adder
Reversible logic is emerging as an important research area having its application in diverse fields such as low power CMOS design, digital signal processing, cryptography, quantum computing and optical information processing. This paper presents a new 4*4 parity preserving reversible logic gate, IG. The proposed parity preserving reversible gate can be used to synthesize any arbitrary Boolean f...
متن کاملReversible Logic Multipliers: Novel Low-cost Parity-Preserving Designs
Reversible logic is one of the new paradigms for power optimization that can be used instead of the current circuits. Moreover, the fault-tolerance capability in the form of error detection or error correction is a vital aspect for current processing systems. In this paper, as the multiplication is an important operation in computing systems, some novel reversible multiplier designs are propose...
متن کاملDesign of a Novel Fault Tolerant Reversible Full Adder for Nanotechnology Based Systems
Reversible computation plays an important role in the synthesis of circuits having application in quantum computing, low power CMOS design, bioinformatics and nanotechnology-based systems. Conventional logic circuits are not reversible. A reversible circuit maps each input vector, into a unique output vector and vice versa. We demonstrate how the well-known and very useful, Toffoli gate can be ...
متن کاملRealization of a Novel Fault Tolerant Reversible Full Adder Circuit in Nanotechnology
In parity preserving reversible circuit, the parity of the input vector must match the parity of the output vector. It renders a wide class of circuit faults readily detectable at the circuit’s outputs. Thus reversible logic circuits that are parity preserving will be beneficial to the development of fault tolerant systems in nanotechnology. This paper presents an efficient realization of well ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1009.3819 شماره
صفحات -
تاریخ انتشار 2010